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A new approach to the calculation of the central charge 

G Schutz 
Department of Nuclear Physics, W i m a n n  Institute, Rehovol, Israel 

Received 28 August 1991 

AbstrscL HI: show lhat lhe Central & a g e  e of the Virasom algebra is determined Ly 
the spectrum of the Hamiltonian Lo + Lo m-pnding to a partition funnian which 
is invariant under the subgroup of modular vansformations generated Ly S. Using 
this m u l l  we discuss in detail a new possibility of detcrmining e for a given V t e m  at 
niticality which turns out U) give acellent estimates even if the lattices accessible to 
numerical calculation are wry small. This enables IU to @in the central darge of 
some spin sjstems. Furthermore our approach U, the determination of c leads to new 
imiveml funnions interpolating beween criticality and oE-Aicalily. 

1. Intmduction 

In twg-dimensional conformally invariant systems the central charge c of the Vua- 
soro algebra plays a central role in the understanding and classification of statistical 
mechanics models. At criticality, each scaling field corresponds to a representation of 
this algebra and for a given value of c the anomalous dimensions (critical exponents) 
z of the scaling fields and correlation functions for many classes of systems can be 
computed [l]. Clearly, knowledge of the central charge for a specific system k of 
great importance and much effort has been devoted to its determination [2-4]. 

In addition to that, in a statistical mechanics model defined on a torus modular 
invariance implies strong constraints on the possible operator content of the theory 
[5] and using modular transformations one can derive partition functions for various 
non-periodic boundary conditions imposed on the system [6]. For systems with central 
charge c < 1 only very few modular invariants exist; in the presence of higher infinite- 
dimensional symmetries the situation is similar even if c > 1. Thus, for a given value 
of c, the operator content of the model under consideration is almost completely 
fixed. 

Here we ask the reversed question of whether it k possible to find the central 
charge if the operator content, characterized by the set of all critical exponents, is 
!mown. Several positive answers to this question have already been given ([3, 7, 
see later). Using modular invariance, or, to be more precise, invariance under the 
subgroup of modular transformations generated by S (see section Z), we will give 
another answer leading to a new method of determining c, i.e. we present a new 
relation expressing c in terms of the fiite-size scaling spectrum of the Hamiltonian 
corresponding to an S-invariant critical system; this is the content of the virial theo- 
rem (1.12) and (2.9) discussed in section 2 It turns out that this way of computing the 
central charge, when applied to systems where only numerical data for finite lattices 
are available, leads to excellent estimates for c. Therefore, in a next step, a finite-size 
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scaling analysis shows how to obtain the central charge from finite-size data. This 
procedure is to be discussed in detail for two reasons. Since in such a determination 
of the central charge one has to rely on ‘experimental’ data (more frequently obtained 
by computer than by real experiments), one has to discuss possible sources of errors. 
Wrthermore, the finite-size scaling analysis in certain geometries [S] has already been 
proven to be a powerful tool in determining critical quantities such as the central 
charge or critical exponents and one would like to compare the results obtained from 
these methods. 

Let us briefly remind the reader how the standard ways of determining c in a 
concrete system work. If some critical exponents have been measured, the simplest 
possible way to determine the central charge is to compare them with the prediction 
from the postulated conformal field theory with central charge c. However, without 
additional information (e.g. on some higher infinite-dimensional symmetries present 
in the system) this method seems to be useful only for unitary models with c < 1, 
because for c 2 1 there are no restrictions on the allowed values of the various 
critical exponents. Another possibility is using the sum rule [7] 

c = - ( k z i ) - 2 ( n - 1 ) + -  12 41 n 
n 

i = 1  

where the zi are the critical exponents of the n primary fields present in the system 
and the non-negative integer 1 (1 # 1) characterizes the corresponding field theory. 
Here it is crucial to know the number of primary fields n. If 1 is not known, this 
relation gives a lower bound for the central charge in terms of the critical exponents, 
Czi < n(n - 1) /6  -!- nc/12. Note that the critical exponents with large values of 
I give the most significant contribution to the sum in (1.1). Usually, in finite-size 
calculations, these exponents are the hardest to determine. 

A direct measurement of the central charge can be obtained from the ground state 
energy or the specific heat of the one-dimensional quantum system corresponding to 
the No-dimensional critical system [2, 31. The idea is that instead of ansidering the 
infinite two-dimensional critical system to study the same system at criticality with 
one of the two space directions kept finite. We will consider systems of dimension 
p x L and consider L as the space direction and p as the Euclidean time direction. 

Consider the partition function of a one-dimensional quantum system of length 
L and ground state energy Eo at temperature T = 1 / p :  

z e x c .  (1.2) = T , . ~ - P H  = e - P E ~ ~ r e - @ ( H - E o )  __.-PE 

In the limit p -+ cc this expression is the partition function of a two-dimensional 
system mapped to a strip of infinite length and fnife  widlh L (a cylinder in the case 
of periodic boundary conditions in space direction ij. At criticaiity for i iarge (ii 
the scaling limit), H - Eo is related to the dilatation generator Lo + E,, of the 
Virasoro algebras with central charge c 191: 

2 R  C 

H - E o - -  t L  (LO +Eo - 5) (1.3) 

Here the ‘sound velocity’ 
are the eigenvalues of Lo +- Lo given by the energy gaps of H. They scale as [lo] 

fixes the Euclidean time scale. The critical exponents I - 
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where in the limit of large L the corrections to finite-size scaling, symbolized by the 
dots, vanish. 

We fvsl consider a quantum system of jkde length at zero temperature P = 
1/T - CO, ( P  >> L). Assuming periodic boundary conditions in the space direction 
the free energy per unit length at zero temperature F / L  = limp,, p-' In Z / L  is 
just equal to the ground state energy -E , /L  per site of H. Expansion in powers of 
L at T = 0 gives [2] 

Here A is the non-universal bulk free energy and the dots denote (again non- 
universal) corrections to finite-size scaling vanishing in the scaling limit. Note that 
boundary fonditions in the time direction are immaterial since we have taken the h i t  
p - CO. This method of computing the central charge is usually used in numerical 
bite-size calculations. By computing Eo as a function of L one can obtain estimates 
for the central charge using (1.5). In order to improve the series of estimates ob- 
tained for different values of L, one may apply some extrapolation algorithm to this 
series and get a final estimate for the central charge. The reliability of this estimate 
depends strongly on the order of magnitude of the corrections to finite-size scaling. 

Note that the Hamiltonian is fixed only up to a non-universal numerical constant 
factor, the sound velocity [. In order to preselve conformal invariance, the Hamilto- 
nian has to be normalized by this factor which in mcst cases has to be determined 
approximately from the finite-size data (see [ll] and section 4 where an independent 
means of determining [ is discussed). This gives rise to an additional error in the 
determination of c. This difficulty can be avoided by considering the logarithms of the 
eigenvalues t , (  L )  of the isotropic transfer matrix T( L).  Because of the universality 
of the exponents x,, and the central charge c one has 

and 

L - lim - (In t,( L )  - In to( L ) )  = z, (1.7) L-m 2 R  

where to  denotes the largest eigenvalue of T. Working in the transfer matrix for- 
malism has the advantage of avoiding problems with the normalization, but has the 
drawback that the finite-size corrections are usually larger [ll]. 

Relations (1.5) and (1.4) (or (1.6) and (1.7) respectively) in many cases provide 
a very accurate way of measuring the central charge c and the critical exponents 
zn in a given system [2, 131 and have become a standard method in analytical and 
numerical finite-size computations. Errors in the numerical determination of c from 
the ground state energy come from the generally unknown constant A (A), from the 
normalization 5 and from corrections to finite-size scaling. 

Adifferent method of computing c is founded on the interpretation of (1.2) as the 
partition function of a one-dimensional quantum system of infrnae Iength L at fvlire 
temperature T = 1/P, i.e. we consider the case L > P, P h i r e .  After performing 
the limit L -+ m one expands the free energy per unit length T l n  Z / L  in powers 
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of T and studies the low-temperature behaviour of the system. Assuming periodic 
boundaly conditions in time direclior! (p)  one finds [3] 

where Z,,, (1.2) is the part of the partition function resulting from the excitation 
energy. This relation allows the computation of the central charge from the excita- 
tion spectrum of the Hamiltonian: Considering the thermodynamic average of the 
excitation energy per unit length CJ,,,/L = 8/8pln Z e J L  at temperature T one 
obtains 

Assuming = 1 and using (1.4) this gives 

(1.10) 

Now taking the low temperature limit p = 6 L and keeping in mind that throughout 
this discussion L >> p was assumed one obtains 

(1.11) 
= 121im @ ( L o  + 

6-0 

expressing the central charge in terms of the scaled energy gaps of H. Another 
expression can be obtained from the low temperature limit of the specific heat per 
unit length by taking the second derivative of F / L  with respect to T.  This way 
of measuring the central charge has been used in many cases where the specific 
heat could be computed analytically and in several experiments [3, 121. Note that 
in numerical applications this technique of determining c has the drawback that hvo 
approximations are necessary. First data have to be extrapolated to L -+ co to obtain 
(1.11) or the specific hear per unit length cv(T) = IimLdm C,(L,T)/L. Then, 
out of this function, the central charge has to be extracted. 

So far this short review. We want to stress that in reading formulae (1.8)-(1.11) 
it is essential that the limit L - co has already been performed, (i.e. one assumes 
L >> p), while in (1.5) the limit p - 00 was considered (p >> L). In this paper we 
consider the case when both p and L are taken to infinity, the ratio p /  L = 6 kept at 
Iixedkiie value. As in (Lll), in our approacn c turns out to be given by the spectrum 
of Lo +To, i.e. c is determined by the scaled (and normalized) energy gaps of the 
Hamiltonian (or the transfer matrix respectively) rather than by the ground state of 
H only. However, the expression derived later (see equation (2.9)) is different. For 
certain choices of boundary conditions in space and time direction we obtain the 
virial theorem ({ = 1) 

(1.12) 



A new approach to the calculation of the central charge 2165 

For 6 - 0 (low temperature limit L >> p)  we recover Afffeck's result (1.11). In 
numerical applications we will focus on the case 6 = 1 (corresponding to a System 
defined on a quadratic torus of dimension L x L, L -+ m). It turns out that in 
such a geometry the virial theorem (1.12) can be used to obtain finite-size scaling 
estimates for the central charge converging very well to the true value of c in the 
infinite system. The reason why we choose 6 = 1 is that, because of the symmetry of 
(1.12) in 6 and 1/6,  the contribution of errors in finite-size estimates of the scaled 

ehn ~ ~ ~ : i ~ ~ ~ : ~ ~  (1 9, I...," ,.f r I r \ +,. +ha anm..inn l."'EJ 5 - p  "L L l l l  I I Y L L I I I L U I I I ( I I I  (A&, ~ " L ~ C , ' " " " C J  U, YO T YO, L" ,,,e Wyl""."'. 

(1.12) is minimal at this particular value. WO advantages of our result compared 
with the determination of c from the ground state energy are a reduced sensitivity to 
errors in the normalization and the fact that the non-universal constant A does not 
appear in our equations. Compared with the determination from the energy U e x c / L  
an obvious advantage is that only one extrapolation is necessary and no additional 
fit. There is also the advantage of a reduced sensitivity in the dependence on the 
normalization. 

Studying the expression given in equations (1.12) or (2.9) respectively, one finds 
that in numerical applications there are two different strategies in determining c. 
The first is to extrapolate the critical exponents from the finite-size data and then 
to use these extrapolants to obtain an estimate for c. The second is to take the 
scaled finite-size energy gaps as they are and get an estimate c ( L )  depending on 
the lattice size and then to extrapolate c( L). We will focus on the latter strategy 
since it can be. applied more generally. Many examples presented in section 3 show 
that good estimates for c can be obtained even from tiny lattices. Combining the 
various methods of determining the central charge described earlier will improve 
the numerical accuracy considerably and give (together with the critical exponenrs) 
valuable information on the universality class the system belongs to, even if c 2 1. 

We want to stress that so far all parameters on which the Hamiltonian depends 
(like temperature or magnetic field strength) were assumed to be such that the 
corresponding two-dimensional system is criticalt. However, it is interesting to note 
that by expressing the critical exponents in terms of the scaled energy gaps as functions 
of the parameters of the two-dimensional system their relation to the central charge 
extends away from criticality into the scaling region and thus defines new universal 
f.:~ctions of :emperature, ~ a g n e t i c  fie!c! strength, etc characterizing :$e system under 
consideration. At the critical point, these functions take the value c, which is the 
central charge. This is going to be discussed in the case of the king model with a 
thermal perturbation, where we can compute this function exactly. 

The paper is organized as follows. In the following section we define a class of 
universal functions C,,, depending on the same parameters { g }  as the Hamiltonian 
(transfer matrix) and study their behaviour in the critical ( { g }  = { g c ) )  range of 
parameters. In particular, we show that C B B , ( g C )  = c. In section 3 we discuss the 
finite-size corrections to C,,,. In the critical region C,,, turns out to converge 
very rapidly to c in many cases, providing excellent estimates for c even if only data 
for very small lattices are available. In a comparison in some examples this method 
of determining c gives better results than the standard way of estimating c from the 
ground state energy described earlier. We present results for well h o w n  models such 
as the Ising model and conjectures for cases, where c is not yet known. In section 4 

- 

t In pnicular, the lempenluru variablu of the two-dimensional syslem used in Seclion 5 should not k 
mnlused with the tempemlure T = 1/p of L e  one-dimensional system. 
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the dependence of the measurement of c on the normalization is studied. As a 
by-product of our considerations we propose a way of determining the normalization 
C of the Hamiltonian using modular invariance. In section 5 we briefly comment on 
the properties of the universal functions C,,.(g) at off-criticality. As an example 
we consider the Ising model with a thermal perturbation in zero magnetic field. In 
the last section we summarize and discuss our results. 

2. The universal CBE,  functions a t  criticality 

Let the Hamiltonian (1.2) of a system of finite length L depend on a set of param- 
eters {g) such as temperature or magnetic field strength. In the sequel this set of 
parameters {g} will simply be denoted by g. We denote by E,,(g; L )  the ground 
state energy of the Hamiltonian H. Consider the limit L ,  p - CO, with 

p = 6 L  6 = constant. (2.1) 

The partition function on a rectangle of dimension 0 x L with periodic boundary 
conditions, Le. a torus, is given by [lo] 

Z p p ( L , @ )  = Tre-PH = Tre(-LH)6 (2.2) 

where 6 = p / L  is the modular parameter of the torus. Define the universal function 
Cpp({g}) for the quadratic torus with 6 = 1 by 

111 Z p p ( g ;  L;  6) - L . E,(g; L )  . (2.3) a I,=, 
Inserting (2.2) one gets 

L 
L-m 2n 

= 12 lim -(H - 

This function, the mean d u e  of the scaled energy gaps on the quadratic torus 
(in one-dimensional language: the thermodynamic average of the scaled excitation 
energy at inverse temperature /3 = L ) t ,  is the basic object we are dealing with in 
this paper. Its properties and generalization to other boundary conditions are going 
to be. discussed here and in the following sections. 

Suppose that the system undergoes a second-order phase transition for a certain 
set of coupling constants {g} = {gc). At criticality in a conformally invariant system 
Z,, is modular invariant [6] ,  so in particular it is invariant under the subgroup of 
modular transformations generated by S : 6 -+ l / 6 .  In the large L limit we have 

C 1 
Z,,(g,; 6 )  = Trexp [-2n ( L o  + E,, - -) 11 61 = Z,, (gc; x) 
t Not L B B as in ( I l l ) !  
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where (1.3) was used (we assume H to be normalized). Thus 

From (2.5) and (2.6) follows 

(2.7) 
C - 1 c  
- 12 - (Lo + Lo), = -3 (12 - (Lo + f-O)l/S) 

which is the result quoted in the introduction (1.12). In particular for 6 = 1 we can 
formulate the virial theorem as 

Inserting the scaling properties (1.3) and (1.4) into the definition of C,,(g) (2.3) 
we find Z p p ( g , ;  6) = eTCl6 E, e-2s2*6 and the virial theorem expressed in terms 
of the function C,, reads as 

c = 12(L0 +To),=,. (2.8) 

- 
_ ^ I _  - .  

Cp,igcj = i w 0  + L . ~ ) ~ , ,  

= c. 

Since in our approach we consider the /3 ,L -+ M with condition (2.1). 6 finite, 
boundary conditions in both space and time direction, are relevant. The central charge 
of the Wrasoro algebra can be computed from the set of anomalous dimensions of the 
scaling operators and their descendents belonging to an S-invariant partition function. 
Rephrased in a different way, this means that c is determined by the spectrum of 
Lo +To given by the energy gaps of the Hamiltonian (or transfer matrix) describing 
the system. We want to stress that the sum in (2.9) does not only mntain the 
anomaious primaiy fieids .out runs uver "pieie spectrua of 

Lo +Eo. 
Instead of using Z,, one may insert into the definition of C (23) other linear in- 

dependent S-invariant partition functions Z,,, corresponding to systems with bound- 
ary mnditions B, B' in space and time direction defining new functions CBB, (g ) .  

(2.10) 
7r L--m 

Because of S-invariance 

thus 
C B B ' ( g c )  = c. (2.12) 

Note that this holds true for any linear combination of S-invariant partition func- 
tions 2, = xEl a ; Z B , B : .  This defines functions C , ( g )  corresponding to different 
choices of boundary conditions specified by the set of numbers a. At criticality they 
satisfy 

C,(g,) = c (213) 
independent of a. Each of the functions C ,  gives an independent determination 
of the central charge c. Equations (2.9), (2.12) and (2.13) result merely from S- 
invariance of the partition function and therefore apply to any two-dimensional con- 
formally invariant system. 



2168 G SchilQ 

3. Application to finite systems 

So far, we have discussed results which are valid for infinite systems. In order to 
compute the an t ra l  charge of a specific system exactly one either has to calculate 
the free energy per site in a strip of finite width L at zero temperature and expand 
it in powers of L-' (see (1.5)) or one computes the free energy per site of the 
infinite system at finite temperature T and expands it in powers of T (1.8). The 
virial theorem (2.9) opens the new possibility of computing c of a system of length 
L and temperature T = 1 / L  in the limit L - CO, LT = 1. As we discuss in 
this section, this can be used to obtain excellent estimates for the central charge in 
cases where only numerical data for finite systems are available. In such systems 
only the low-lying part of the spectrum can be determined and consequently not the 
complete (infinite) set of excitations of the primary fields. Apart from that the scaled 
energy gaps E,,( L)  = t (  L/2rr) (  E, - Eo) (see 1.4) differ from the exact values of 
the critical exponents I, by a finite-size correction E,. Both effects have to be taken 
into account when trying to extract an estimate for c from finite-size data. 

3.1. Effecf of culling the Hilbcrf space of sfales 

Before we study finite-size effects, it is important to note that the sum in the right- 
hand side of (2.9) is very rapidly converging, therefore for an approximative compu- 
tation of c it is possible to restrict the infinite set of critical exponents to a small 
number of low-lying excitations in the spectrum. This is important since in finite-size 
calculations only the lower part of the spectrum can be determined. It is worth 
studying the effect of cutting the space of states on the computation of c by means 
of (2.9) in mncrete examples. 

Consider the Ising model in zero magnetic field on a two-dimensional lattice of 
dimension p x L.  The partition function is 

where k is the inverse of the temperature (not to be confused with 0, the temperature 
of the onedimensional quantum system). The sum inside the exponential runs over 
all nearest neighbours in the lattice and the sum outside over all mnfigurations of 
spins ui = il. The infinite system is critical if k = 12, = i l n ( 1  + fi) with central 
charge c = i. According to (2.5) at criticality the partition function on a torus of 
dimension L x 0 can be written as 

Z ( k  c 1  .& )  = Tre-'r(LOtiTo-1124)6 (3.2) 

The (infinite-dimensional) space of irreducible representations of the Virasoro algebra 
is spanned by the eigenstates of the (scaled) Hamiltonian Lo +To with eigenvalues 
I = A+r+x+F-.  The highest weight representations (T = F = 0) correspond to the 
scaling fields with critical exponents x = A + E. For periodic boundary conditions 
this are the primary fields energy density z with dimension (A ,K)  = (i, i), I( = 1, 
the magnetization U ( (A,K)  = ($,h), !xo = $) and the identity operator 1 with 
( A , a )  = (O,O), z = 0. In terms of characters of the Virasoro algebra the partition 
function reads 

z p p ( 6 )  = X o x o  + xl/?yI/? + x I / I G ~ I / I S  (3.3) 
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where 

and z = e-2r6. It turns out that ignoring all but the primary fields, ie. restricting 
the space of Virasoro states to the irreducible highest weight representations, gives a 
good approximation for c. In the case of the king model inserting the dimensions 
z = O,z, s and ze = 1 into (2.9) and neglecting the contribution from the 
descendents ( r , F >  1)yields c =  12(:exp-271/8 +exl , -2n) / ( l  + e x p - 2 7 ~ / 8 +  
exp -27r) % 0.485. 

Including the lowest lying excitations with T + 7 < 1 (z, < 2) the result is 
c $s 0.4998 and taking all descendents with r+F  < 2 (z, Q 3) leads to c $s 0.49994 
(see tabie ij. 

l h b k  1. Different approximalive values lor the enlral  charge c computed f" (2.9) for 
the king model (mws 1 and 2). the threestale Polu model (mw 3) and Ihe four-slate 
Potu model (y 4) using panilion funclions Z p p  corresponding to periodic boundary 
mndilions and Z (see (3.6)). T i e  calculalion is done using ailical axpanenu with zn < 
1. 2 and 3 respectively. 

z I" < 1 z,, < 2 I,, < 3 c 

Z p p  0.485 0.4998 0.49994 0.5 

Z p p  0.773 0.7998 0.799999 0.8 
Z p p  0.959 0.9995 0.99990 1 

z a497 0.49998 0.499992 

There is one linear independent S-invariant partition function Z,, corresponding 
to antiperiodic boundary conditions in space and time direction 

ZAA = Xi/tsYi/is - X a S t / ?  - Xi /zXn .  (3.5) 
- 

With Z,, one can construct the S-invariant linear combination Z = Z,, - Z,, = 
Z A P  -+ Z,, which in terms of Virasoro characters is given by 

(3.6) 

The primary fields appearing in 3 arc the identity operator with dimension (O,o) ,  
the Mayorana fermions and with dimensions (i,O) and (0, f )  respectively and 
the energy density E with ( A , K )  = (i,  i). As already seen very few exponents 
lead to almost exact values for c. This holds true not only for the king model but 
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is also a general feature of expression (2.9) making it useful for determining the 
central charge. In table 1 we list approximate values for the central charge of the 
king model obtained from Z,, and 2 and of the three- and four-state Potts model 
obtained from Z,, for wrious cutoffs in the space of irreducible representations of 
the Virasoro algebra. 

3.2. Finire-size correcrions 

As discussed in section 3.1, we do not expect the lack of higher excitations in the 
finite-size spectrum to be an essential obstacle to an approximative calculation of c. 
Excitations with large I do not give significant contributions to the sums in (2.9) and 
can be ignored. On the other hand, the finite-size contributions to xn lead to finite- 
size corrections to c. This has to be discussed in more detail. Here as throughout 
this section we asume the Hamiltonian to be normalized properly. 

First of all, as mentioned in the introduction, there are two strategies one can 
follow. One possibility is first to obtain estimates for critical exponents by an ex- 
trapolation of the scaled energy gaps to L + cc and then to use (2.9) to calculate 
an estimate cexp. The difference E ,  between the estimated exponents x p )  and the 
mrrect wlues I, leads to an error in c as discussed later. If the low-lying part of 
the spectrum has been determined completely, it is given up to first order in the 

under consideration, it might be impossible to obtain all critical exponents which give 
relevant contributions to (2.9). In such a case the resulting error in the determination 
of c would be large. 

The second method is first to insert the complete set of finite-size data, the scaled 
energy gaps &,,( L)  into (2.9). This defines a function C( L) converging to c. Now 
this function can be extrapolated in order to improve the result. In order to decide 
which extrapolation algorithm has to be applied and how reliable the result is, one 
must have some knowledge of the order of magnitude of the finite-size correction to 
c and the scaling properties of C( L )  which can be derived from the scaling behaviour 
of the energy gaps. 

6ifferences E by (3,9j C( repiawd by c ~ x p ,  On ae in s ~ i e m  

We assume the scaled energy gaps E,, ( L )  to be given by [6] 

(3.7) 

Here the a:' are constants and y:;' > 0. E , ,  = E , , ( L )  denotes the finite-size 
mrrection to the exponent zrL. Then C( L )  3 C,'(g,; L )  for a finite lattice as a 
function of L is defined by 

Z,(I,,  + ~, , jexp(-2ne , jexp(-%*z, j  
= 12 E, exp( -2aE, , ) exp( -2nI , )  

= 12 ( z e x j 1 ( - 2 n ~ ) )  + ( ~ e x p ( - ' 2 n ~ ) )  
(ex 11 ( -2 ne)) 
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Ekpansion in E leads to the scaling behaviour of the universal C-function at the 
critical point. Up to first order in E the finite-size correction to C is given by 

c ( L ) %  c + ( 1 2 + 2 r r c ) ( ~ ) - 2 4 x ( z e )  
= c + atL-Y1 + a2L-Yz + . . . (3.9) 

with constants ak and exponents yk determined by (3.7). The (infinite) set of ex- 
ponents uk appearing in this expansion is the Same as the set {yt ) ) .  The order 
of magnitude of the finite-size correction to c is that of the finite-size corrections 
to the critical exponents. The powerlike convergence suggests the application of the 
algorithm of Bulirsch and Stoer [IS] for an extrapolation to L -+ CO. 

3.3. Determinalion of c in some specijic ~ s f e n t s  

In order to test the reliability of computing the central charge from the virial theorem 
(2.9) wing finite-size data, we have checked it in many cases where the central charge 
k known. After having convinced ourselves that this method produces reliable results 
we applied it to some systems, where it is not yet known. We discuss some examples. 
In table 2 we present the function C( L )  and extrapolated values for various models 
where c is known. 

%blc I Different approximative values C(L) for Ule central &arge e = C(o0) 
computed from quantum Hnmiltonians with L sites for the lsing madel, the three- 
State Potu model and the Aslikin-Teller model [I61 far various values of the coupling 
mnstant. h = $ corresponds to the four-state Potu model and h = f to the point with 
Zamolodchikov-Fatcev symmety 1171. At h = f the s p e m  reduces U) two decaupled 
king models and at h = 1 a Kosterlitz-ntouless phase transition lakes place. eCip is 
an extrapolated quantity while ctlaeor denotes the actual value of Ule mntral charge. 

Ashkin-Teller 

L king Potts(3) h = h = ?. h = f  h = l  

1 0.5136 0.8526 1.1100 1.1055 1.0272 0.6661 
2 G.554! G.8802 !.!I?? !.!2c!? I.."l" I l"P2 !,Mjd 
3 0.5339 0.8519 I.0612 1,0644 1.0677 1.0249 
4 0.5184 0.8267 1.0337 1.0335 1.0368 1.0145 
5 0.5108 0.8146 1.0177 1.0178 1.0216 1.W74 

CIXp O.SoOW(2) 0.8000(1) l.OO(l) 0.995(7) 1.004(4) 0.997(5) 

Ctheor 0.5 0.8 I 1 I 

The extrapolated values computed using (3.8) are in excellent agreement with 
the predictions. In addition we find that in many cases the finite-size data evaluated 
from very small lattices give surprisingly good estimates for c The scaled energy gaps 
& ( L )  are computed from the eigenvalues of the corresponding quantum Hamiltonian 
with i4 sites (ising modeij and i i  sites (three-states Potts modeij respectiveiy. in 
the case of the Ashkin-Rller model [I61 we have restricted our calculation to chains 
of length up to five sites in order to simulate a more typical situation. In order 
to get information on the error in the determination of c resulting exclusively from 
finite-size corrections, we have selected examples, where the normalization < of the 

? 
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Hamiltonian is known. The error resulting from the measurement of E is investigated 
in the next section. 

It is tempting to apply (3.8) to transfer matrices of small lattices as well. Here in 
principle no normalization has to be fixed (see introduction), only bite-size correc- 
tions contribute to the error in c. As shown in table 3 values for c computed from 
the eigenwlues of transfer matrices for only one site are very close to the real central 
charge of the infinite system! The fast convergence of C( L )  is particularly useful 
when only small lattices are accessible to numerical calculations. 

lhbk 3. Different approximative Values C( 1) for the Cenlral charge c of the king model, 
the lhree- and four-stale Polls model and the six-vena model mmputed using (3.8) from 
the eigenvalues of the mrrsponding transfer matrices for one ate. The value obtained for 
Le six-vertex model corresponds to the dioice of parameters 7 = n/l2, v - q = 7~12 
in Baxter's paramelrizalion of lhe v e n a  wrighls 1181. 

Model king PolY3) Polls(4) Six-vena 

C(1) 0.493 0.811 1.049 1.049 
e 0.5 0.8 I 1 

As an example of the strategy first mentioned, first evaluating extrapolants for the 
critical exponents and then calculating c from these, we consider the six-state quantum 
chain (19, 201. The spectrum of the six-state quantum chain with toroidal boundary 
conditions is known for certain d u e s  of the coupling constants [20]. For special 
choices of coupling the system has Zamolodchikov-Fateev symmetly [17] with central 
charge c = 1.25. Inserting the measured exponents with 1: < 2 as given in [20] for 
the spectrum with periodic boundary conditions into (29) we obtain c = 1.244(3), 
while the determination from the ground state energy gives c = 1.25( 1). 

Next we want to compare the determination of the central charge discussed in 
this work with the traditional numerical methods, Le. using the correction to the 
ground state energy per site (1.5) and from the excitation energy (1.11). For the 
XXZquan tum chain (corresponding to the six-vertex model with c = 1)  Bonner 
and Fisher determined numerically the low-temperature specific heat from chains of 
length up to 11 sites [21]. Using (1.11) there results give c = 1.1. On the the 
other hand, from (3.8) one obtains c = l.OO(3) from data from up to 10 sites and 
extrapolating to L - CO. 

When determining c from the ground state energy (1.5) one subtracts E ( L ) / L -  
E(L - l ) / ( L  - 1) in order to eliminate the generally unknown constant A and 
obtains an estimate 

In table 4 we show finite-size estimates and BST extrapolants for c obtained from the 
transfer matrix of the critical king model (3.1) with periodic boundary conditions. We 
ssume the hu!k free enerE per six A to be unknown and restrict &e calcu!a_tiom 
of the estimates by (3.8) (left columns) and (1.5) (right columns) to small numbers of 
sites. In order to study the dependence of the extrapolated value from the maximal 
number of lattice sites availahle we calculate the extrapolants using the data C ( L )  
and cfe(L) with 1 < L < 3, I < L < 5 and 1 < L < 8. Comparing the finitesize 
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results and the extrapolants obtained from the values up to three, five and eight 
sites we find that the determination of c from the ground state energy is less precise 
than the computation from the energy gaps. The difference in precision becomes less 
pronounced as the number of sites increases. 

Tabk 4. Different approximative values for the central charge e of the king model with 
L sites computed f" the eigenvalues of the transfer mairk. In mlumn 2 the ePlimatc8 
C ( L )  obtained from (3.8) am shown, while mlumn 4 mntains estimates e,*( L) obtained 
h m  the finite-size mrrection to the free energy per site. see (1.5). In mlumns 3 and 5 
av-exlraplanls of the respective series up to three, five and eight sites an given. 

1 0.4930 - 
2 0.5930 0.5676 
3 0.5658 0.55(2) 0.6034 0.64(4) 
4 0.5379 0.5653 
5 0.5225 O.SOS(5) 0.5380 0.49(2) 
6 0.5145 0.5235 
7 0.5102 0.5158 
8 0.5075 O.SOZ(2) 0.5113 0.503(3) 

Having gained confidence in the applicability of (2.9) to small lattices we consider 
the spin-j XX quantum chain [22] 

(3.11) 

where Sz(y) denotes the spin-j matrix acting on site i. Tible 5 shows data obtained 
from chains of length N = 2 with periodic boundary conditions for different j. The 
normalization was obtained from the partition function with antiperiodic boundaly 
conditions (see section 4). The spin-f chain is known to have = 1 and c = 1. 
Using finite-size data of the spin-1 chain with N = 8 [22] one obtains C(8) = 1.02 
while C(2)  = 1.18. From the estimates presented in table 5 we predict that c = 1 
independent from j. 

Table 5. Different approximative values for the normalization E and the central charge 
c computed from (3.8) for the spin-j X X  quantum chain with WO sites. 'Ex data 
support the mnjecture c = 1 independent from j .  

( (2)  0.88 0.57 0.43 0.34 
C(2) 0.99 1.18 1.15 I 1 2  

- C ( 8 )  - 1.02 - 
G O " ,  I I 1 1 

4 Dependence of c on the normalization < 
One possible method of computing the central charge and critical exponents of a 
statistical mechanics system is diagonalizing a quantum Hamiltonian H corresponding 
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to this model. However, in order to preserve conformal invariance at the critical point, 
the normalization [ of H which fixes the Euclidean time scale has to be chosen 
appropriately. In the previous section in most cases we considered models, where the 
normalization ( of the corresponding quantum Hamiltonian was known. We denote 
this normalization by [,,it. In most cases, however, tCrit has to be determined from 
the finite-size data and we have to discuss the sensitivity of the determination of 
the central charge to an uncertainty in the determination of From finite-size 
calculations in the Hamilton formalism ECrit can be computed only approximately. 
Denote this 'experimental' value by eexp with EeXp = p # 1. The eigenvalues 
of H then differ from the eigenvalues of the properly normalized Hamiltonian by a 
factor p. Using the conventional method of determining c via the correction to the 
ground state energy (1.5) or from the excitation energy (1.11) one obtains 

Cexp = P C  (4.1) 

(In contrast to section 3, here we assume that no finite-size corrections contribute.) 
Setting a = (E,,, - &)/Ecrjt = p - 1 we find the error A in the determination of 
C, 

A ( a ) = ( c e X p - c ) / c = ~ .  ( 4 4  

On the other hand, computing c by (2.9) gives, up to first order in a, 

C , ( 1  + a ) z e x p [ - ? n ( l  +a).] 
E, exp[-'Ln( 1 + n ) z ]  

Cexp = 12 

(4.3) 
C = c + ( 1 2 + 2 a c ) a - - 2 4 n a ( z 2 )  

1 2  

where we haved used (3.9) with E,, = a ~ , ~ .  S-invariance of 2 gives (z2) > ( ~ / 1 2 ) ~  
and defining y > 0 by (z2) = ( 1  + r) (c /12) '  we find 

~ ( a )  = ( I  - yy) a < n if c > 0. (4.4) 

In a neighbourhood of Ecpjt, ceXp as a function of feXp computed by (2.9) cannot 
grow faster as when computed from the ground state energy (1.5). In all examples 
we checked numerically, we even found lA(a)l < n, near Ecrit, i.e. c computed 
from the critical exponents is less sensitive to a wrong normalization compared with 
a determination from the ground state energy. As examples we show c as a function 
of determined by (2.9) for the Ising model (figure 1) and determined from (3.8) 
for the spin-1 XX-chain with two sites (figure 2). 

can be accomplished by normalizing the scaled 
energy gaps A E  between excited states with momenta P and P' of the same pri- 
maly field to A E  = P - P' [ll]. Here we propose an independent method using 
the modular transformation S. Consider a system on the torus with boundary con- 
ditions B and E' in space and time direction respectively. If E has been chosen as 
tCrit such that the system is conformally invariant at the critical point, then after a 
transformation S : 6 -+ 1 / 6  the partition function Z,,, satisfies 

The correct determination of 
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0.7  0.11 0.9 1.0 1 . 1  1 . 2  1 . 3  

I/!.,,,, 
Figure 1. ?he mnttal charge c of the king model mmpuled h m  the aiticai aponents 
given by the partition function (3.3) as a function of the normalization <f&h ming 
the vinal theorem (2.9) (full arve). &,it denotes the mrrecl normalization of the 
mrresponding quantum Hamiltonian. TIe dotted c u m  rhows the dependence of e on < f & i ,  when calculated from the ground slate energy (1.5). 

Flgurc 2. ?he central charge c of the spin I X X  quantum chain mmputed f" 
the scaled energy gaps of the Himiltoniiin (3.11) with WO sites as a function of the 
normalization </&,it using formula (3.9) (full curve). Here &,it z 0.61 denotes the 
normalization of the Hamiltonian obtained approximately in [171. ?he dotted curve 
shows the dependence of c on [/&.it when calculated from the ground state energy 
(1.2) under the assumption llli it c = 1 (see kqble 4 and [17]). 
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In principle (4.5) can be used to determine [,,it. For a numerical determination 
consider the partition function on the quadratic torus (6 = 1). Here 

z,,, = z,,, (4.6) 

which k non-trivial if B # E'. In a finite system of width L this equation defines a 
function E (  L )  converging to E,,it as L -+ m. Different pairs of boundary conditions 
define different functions [( L)  all of them converging to the same value [,,it at the 
critical point. 

5. 'Ihe universal CBE, functions at ofkriticnlity in the Ising model 

The functions C,,,(g) are also defined at off-criticality and therefore allow for an 
extension of the definition of the central charge into the scaling region. Here we 
want to calculate these functions for the king model in zero magnetic field, where 
the energy gaps as a function of the temperature (of the two-dimensional system) are 
known. 

Rrst we briefly discuss the qualitative structure of the functions C,,, at off- 
criticality in the general case. Suppose the system to be in the scaling region near 
the critical point. The energy gaps are continuous functions of the scaling variables 
p ( i )  which we define by 

p ( i )  = ( g ( i )  - 9, ( i )  ) L2-5('' (5.1) 

where di )  is the critical exponent of the field corresponding to the perturbation ( i )  
with correlation length [ ( i )  and the ratio { ( j ) / L  is fixed (L  is the size of the system). 

Consider the same partition functions Z, = CiaiZB,,: as before and the 
corresponding functions C,. Clearly Ca(j~ )  is a continuous function of the scaling 
variables {P(~)]. As discussed earlier, in the critical range of coupling constants 
p( i )  = 0 these functions take the value c of the central charge independent of the 
boundary conditions. Far away from the scaling region all the scaled energy gaps 
either diverge or vanish. Then all terms in the numerator in the right-hand side 
of equation (2.9) become negligible while the denominator remains finite due the 
presence of the lowest gap which, by definition, is 0. AE a consequence C vanishes 
independently from a corresponding to the absence of a universal correction to the 
ground state energy in non-critical systems (see figures 3 and 4, p - CO). CO(@) 
continuously interpolates the central charge between the critical and noncritical range 
of coupling constants and is a measure of the numbers of degrees of freedom. 

These properties of the C functions can be easily studied in the king model on a 
two-dimensional lattice of dimension p x L in zero magnetic field but k # k, (3.1). 
The partition function Z,,(p; 6) in the scaling limit L - CO, p = constant with 
periodic boundary conditions in space and time direction is given by 1141 

Zpp(p; 6) = lini eLEo6  rfi (1 + e-L%. .+16)  + (1 - e - - L ~ r n + i 6 )  + 
L-1 

n=O L-LU 
9,-0 
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where we have chosen /3 = L6,  

and 

(5.3) 

y, = 2arsinhi \ /4p ' i i '  + s i n a n j z i ? j  

yo = 2arsinh(2p/L). (5.4) 

From this partition function one obtains the function C P P ( p )  (2.3) shown in figure 3. 
The partition function 2 ( p ;  6) (3.6) in the limit L -+ CO 

with z = exp - 2 ~ 6  leads to 

shown in figure 4. 
e ( p )  is symmetric in p,  C p p ( p )  is not. The reason is the scaled energy gap 

(E, - E o ) L  which, at the critical point, is proportional to the critical exponent of 
the magnetization. For p - -CO this scaled gap diverges, for p - CO, however, it 
vanishes. This gap contributes to Z,, leading to the asymmetry in C,,, but not 
to 2. In this asymmetry the 2, symmetry-breaking of the king model at the critical 
point is reflected. According to the general properties of the functions C(g) both 
Cpp and take the value C ( 0 )  = 4 = c at the critical point p = 0 and vanish in 
the limit p i foo. 

4 Conclusions 

Combining the ideas of finite-size scaling and modular invariance we have studied the 
properties of two-dimensional statistical models near and at criticality. We defined 
functions C,(g) of the physical parameters {U) such as temperature or magnetic field 
strength characteristic for the universality class the system helongs to (see (2.3), (2.12) 
and (2.13)). Here the index 4 represents the type of boundary condition imposed on 
the system. 

The main result of our investigation shows that for conformally invariant systems 
all these functions take the same value c in the critical range of coupling constants 
{g) = {gJ, where c is the central charge of the Virasoro algebra (2.9). In the 
scaling region away from the critical point the C, are continuous functions of the 
scaling variables p (5.1) approaching zcro when leaving the scaling region ( p  + CO). 

At criticality it turns out that c is given by certain sets of scaled energy gaps which 
are the critical exponents appearing in the corresponding statistical mechanics model. 
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Such Sets are given by partition functions on the torus that are invariant under the 
modular transformation S : 6 - 1 / 6  of the modular parameter 6. 

For an approximate evaluation of c it turns out that not all exponents have to 
be determined, in fact only small subsets (e.g. only the dimensions of the relevant 
operators) are sufficient for a computation up to high accuracy (see examples in 
table 1). This is part of the magic of (2.9) making it suitable for finite-size calculations, 
where only low-lying excitations in the energy spectrum can be computed. Another 
favourable property of C, defined by (3.8) for finite lattices is its scaling behaviour 
(3.9) being of the same nature as that of the critical exponents, a fact which allows 
good estimations from finite-size data. Finally it turns out, that c measured via 
(2.9) (or (3.8) respectively) is less sensitive to errors in the normalization of the 
Hamiltonian H than in the case of a determination using the ground state energy of 
H. These properties lead to excellent finite-size estimates for the central charge e 
even if the iaiiices used for the computation are extremeiy smaii. 'Zabie 3 shows data 
obtained from transfer matrices for only one site. 

Since C(g) as a function of the lattice size converges to zero if the system k 
not critical, in principle a measurement of C provides a determination of the critical 
point. So far we have not yet checked this possibility in a concrete example. As 
an application of our considerations we have computed the spectrum of the spin-j 
yu'lrrrullr Cllnlll (-2 .,,, 'I'IU L V Y l l U  (I - I u,"cp",u~", U, J ,  ""pp"1L"'g ,,,r cy",CCLY1* 

that c = 1. As a by-product of our investigations we showed that the modular 
transformation S leads to relations determining the normalization F in the Hamilton 
formalism. 

Our approach to the determination of the central charge of the  Virasoro algebra 
has led to a valuable tool in finite-size studics and given new insight into the relation 
between the central charge and the critical exponent?. But  it has also raised questions 
we are not yet able to answer. We would like to understand the physical meaning 
of the functions C,(g) in the scaling region. Furthermore it would be interesting to 
learn whether there is any connection with the function C defined by Zamolodchikov 
in his famous c theorem [23] and to Cardy's recent application [4] to systems away 
from criticality. He shows that c can be computed in terms of certain correlation 
functions in the scaling region. In (241 the c theorem is reformulated by using the 
spectral representation for the two-point function of the stress tensor and a possible 
generalization to higher dimensions is discussed. In all these results critical and 
off-critical properties appear to be intimately related. 

".. ""l..... ,.Irn:.. ,I 11, -"A +k....rl " - 7 :"Aa.."",,..". ,.c 2 .CO 
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