IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

A new approach to the calculation of the central charge

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 2161
(http://iopscience.iop.org/0305-4470/25/8/029)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:22

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 25 (1992) 2161-2180. Printed in the UK

A new approach to the calculation of the central charge
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Depanment of Nuclear Physics, Weizmann Institute, Rehovot, Israel

Received 28 August 1991

Abstract. We show that the central charge ¢ of the Virasoro algebra is determined by
the spectrum of the Hamiltonian Lo + Lo corresponding to a partition function which
is invariant under the subgroup of modular transformations generated by S. Using
this result we discuss in detail a new possibility of determining ¢ for a given system at
criticality which turns out to give excellent estimates even if the lattices accessible to
numerical calculation are very small. This enables us to predict the central charge of -
some spin systems, Furthermore our approach to the determination of ¢ leads to new
universal functions interpolating between criticality and offcriticality.

1. Introduction

In two-dimensional conformally .invariant systems the central charge c of the Vira-
soro algebra plays a central role in the understanding and classification of statistical
mechanics models. At criticality, each scaling field corresponds to a representation of
this algebra and for a given value of ¢ the anomalous dimensions (critical exponents)
z of the scaling fields and correlation functions for many classes of systems can be
computed [1]. Clearly, knowledge of the central charge for a specific system is of
great importance and much effort has been devoted to its determination [2-4].

In addition to that, in a statistical mechanics model defined on a torus modular
invariance implies strong constraints on the possible operator content of the theory
[5] and using modular transformations one can derive partition functions for various
non-periodic boundary conditions imposed on the system [6]. For systems with central
charge ¢ < 1 only very few modular invariants exist; in the presence of higher infinite-
dimensional symmetries the situation is similar even if ¢ > 1. Thus, for a given value
of ¢, the operator content of the model under consideration is almost completely
fixed.

Here we ask the reversed question of whether it is possible to find the central
charge if the operator content, characterized by the set of all critical exponents, is
known. Several positive answers to this question have already been given ({3, 7],
see later). Using modular invariance, or, to be more precise, invariance under the
subgroup of modular transformations generated by S (see section 2), we will give
another answer leading to a new method of determining c, ie. we present a new
relation expressing c in terms of the finite-size scaling spectrum of the Hamiltonian
corresponding to an S-invariant critical system; this is the content of the virial theo-
rem (1.12) and (2.9) discussed in section 2. It turns out that this way of computing the
central charge, when applied to systems where only numerical data for finite lattices
are available, leads to excellent estimates for e. Therefore, in a next step, a finite-size
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scaling analysis shows how to obtain the central charge from finite-size data. This
procedure is to be discussed in detail for two reasons. Since in such a determination
of the central charge one has to rely on ‘experimental’ data (more frequently obtained
by computer than by real experiments), one has to discuss possible sources of errors.
Furthermore, the finite-size scaling analysis in certain geometries {8] has already been
proven to be a powerful tool in determining critical quantities such as the central
charge or critical exponents and one would like to compare the resuits obtained from
these methods.

Let us briefly remind the reader how the standard ways of determining c in a
concrete system work. If some critical exponents have been measured, the simplest
possible way to determine the central charge is to compare them with the prediction
from the postulated conformal field theory with central charge c. However, without
additional information (e.g. on some higher infinite-dimensional symmetries present
in the system) this method seems to be useful only for unitary models with ¢ < 1,
because for ¢ > 1 there are no restrictions on the allowed values of the various
critical exponents . Another possibility is using the sum rule [7]

12 & ) 41
c::(&w,—)—Z(n—l)+—?—l— (L1

where the z; are the critical exponents of the n primary fields present in the system
and the non-negative integer [ (I # 1) characterizes the corresponding field theory.
Here it is crucial to know the number of primary fields n. If [ is not known, this
relation gives a lower bound for the central charge in terms of the critical exponents,
Sx; € n(n—1)/6 + ne/12. Note that the critical exponents with large values of
x give the most significant contribution to the sum in (1.1). Usually, in finite-size
calculations, these exponents are the hardest to determine.

A direct measurement of the central charge can be obtained from the ground state
energy or the specific heat of the one-dimensional quantum system corresponding to
the two-dimensional critical system [2, 3]. The idea is that instead of considering the
infinite two-dimensional critical system to study the same system at criticality with
one of the two space directions kept finite. We will consider systems of dimension
B x L and consider L as the space direction and 3 as the Euclidean time direction.

Consider the partition function of a one-dimensional quantum system of length
L and ground state energy E, at temperature T =1/73:

Z=Tre Pl = e Al pre flH-E0)  o~BBag (1.2)

In the limit 3 — oo this expression is the partition function of a two-dimensional
system mapped to a strip of infinite length and finite width L (a cylinder in the case
of periodic boundary conditions in space direction ). At criticaiity for [ iarge (in
the scaling limit), i — E, is related to the dilatation generator L, + L; of the
Virasoro algebras with central charge ¢ [9):

27

— c
H—Eo—»EL(LO+L0—1—_§). 1.3)
Here the ‘sound velocity’ ¢ fixes the Euclidean time scale. The critical exponents z
are the eigenvalues of L, 4+ L, given by the energy gaps of H. They scale as [10]

2w

En(‘[‘) - ED(L) - E'E(mn +- ) (14)
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where in the limit of large L the corrections to finite-size scaling, symbolized by the
dots, vanish.

We first consider a quantum system of finite length at zero temperature 3 =
1/T — oo, (8 > L). Assuming periodic boundary conditions in the space direction
the free energy per unit length at zero temperature F/L = limg_, 8~ In Z/L is
just equal to the ground state energy — E,/ L per site of H. Expansion in powers of
L at T = 0 gives [2]

we
E6L2

Eq(L)

— =1

+ (1.5)

gimn, FIL ==

Here A is the non-universal bulk free energy and the dots denote (again non-
universal) corrections to finite-size scaling vanishing in the scaling limit. Note that
boundary conditions in the time direction are immaterial since we have taken the limit
B — co. This method of computing the central charge is usually used in numerical
finite-size calculations. By computing F, as a function of L one can obtain estimates
for the central charge using (1.5). In order to improve the series of estimates ob-
tained for different values of L, one may apply some extrapolation algorithm to this
series and pet a final estimate for the central charge. The reliability of this estimate
depends strongly on the order of magnitude of the corrections to finite-size scaling,

Note that the Hamiltonian is fixed only up to a non-universal numerical constant
factor, the sound velocity £. In order to preserve conformal invariance, the Hamilto-
nian has (o be normalized by this factor £ which in moest cases has to be determined
approximately from the finite-size data (see [11] and section 4 where an independent
means of determining £ is discussed). This gives rise to an additional ertor in the
determination of . This difficulty can be avoided by considering the logarithms of the
eigenvalues ¢, (L) of the isotropic transfer matrix T(L). Because of the universality
of the exponents r, and the central charge c one has

Int (L) _ ~  mec
—L =Atemt 6
and
. L
- 1],2—20 T (Int, (L)y—Inty (L)) ==z, (1.7)

where t, denotes the largest eigenvalue of T. Working in the transfer matrix for-
malism has the advantage of avoiding problems with the normalization, but has the
drawback that the finite-size corrections are usually larger [11].

Relations (1.5) and (1.4) (or (1.6} and (1.7) respectively) in many cases provide
a very accurate way of measuring the central charge c and the critical exponents
z, in a given system [2, 13] and have become a standard method in analytical and
numerical finite-size computations. Errors in the numerical determination of ¢ from
the ground state energy come from the generally unknown constant A (A), from the
normalization £ and from corrections to finite-size scaling.

A different method of computing ¢ is founded on the interpretation of (1.2) as the
partition function of a one-dimensional quantum system of infinite length L at finite
temperature T = 1//3, i.e. we consider the case L > 0, 3 finite. After performing
the limit L — oo one expands the free energy per unit length Tin Z/L in powers
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of T and studies the low-temperature behaviour of the system. Assuming periodic
boundary conditions in time directior: (3) one finds {3]

Jim £—£‘1A+ Jim g1 mz

3 ;32 (1.8
where Z_ . (1.2) is the part of the partition function resulting from the excitation
energy. This relation allows the computation of the central charge from the excita-
tion spectrum of the Hamiltonian: Considering the thermodynamic average of the
excitation energy per unit length U,, /L = 8/8831n Z,,_/L at temperature T one
obtains

H Uexc_
Jim g = g+ @9

Assuming £ = 1 and using (1.4) this gives

_ . ,82 Zn mne—ZWx,.,G/L
e=12 Jim 7SRt (1.10)

Now taking the low temperature limit 5 = 6 L and keeping in mind that throughout
this discussion L > 3 was assumed one obtains

=2rx,d
e = 121im §22en B2 "
D (1.11)

= 12lim §2(Lo + Ly,

expressing the central charge in terms of the scaled energy gaps of H. Another
expression can be obtained from the low temperature limit of the specific heat per
unit length by taking the second derivative of F'/L with respect to T. This way
of measuring the central charge has been used in many cases where the specific
heat could be computed analytically and in several experiments [3, 12]. Note that
in numerical applications this technique of determining c has the drawback that two
approximations are necessary. First data have to be extrapolated to L — oo to obtain
(1.11) or the specific heat per unit length ¢y (T) = lim,_, Cy(L,T)/L. Then,
out of this function, the central charge has to be extracted.

So far this short review. We want to stress that in reading formulae (1.8)—(1.11)
it is essential that the limit L — oo has already been performed, (i.e. one assumes
L >» (3), while in (1.5) the limit 3 — oo was considered (3 >» L). In this paper we
consider the case when both 3 and L are taken to infinity, the ratio 5/ L = & kept at
fixed finite value. As in (1.11), in our approach ¢ turns out to be given by the spectrum
of Ly + L, ie. c is determined by the scaled (and normalized) energy gaps of the
Hamiltonian (or the transfer matrix respectively) rather than by the ground state of
H only. However, the expression derived later (see equation (2.9)) is different. For
certain choices of boundary conditions in space and time direction we obtain the
virial theorem (£ = 1)

S{L,+ L Ly+ L,
=12 ( 0 ) 5( o)l (1.12)
6+ 1
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For 6 — 0 (low temperature limit L >» 3) we recover Affleck’s result (1.11). In
numerical applications we will focus on the case § = 1 (corresponding to a system
defined on a quadratic torus of dimension L x L, L — oc). It turns out that in
such a geometry the virial theorem (1.12) can be used to obtain finite-size scaling
estimates for the central charge converging very well to the true value of c in the
infinite system. The reason why we choose § = 1 is that, because of the symmetry of
(1.12) in & and 1/6, the oontribution of errors in ﬁnite-size estimates of the scaled

snarmy gance nf tha Hamilrn fatoanualn ~F tha awnracgins
UllUlw BGPD Ul I-ll\-‘ llallllllulllall \loé) \\Abbllvaluca UI. .LIO -l- LJD} lU LIlC mlJl.U-)JlUII

(1.12) is minimal at this particular value. Two advantages of our result compared
with the determination of ¢ from the ground state energy are a reduced sensitivity to
errors in the normalization and the fact that the non-universal constant A does not
appear in our equanons Compared with the determination from the energy U, /L
an obvious advantage is that only one extrapolation is necessary and no additional
fit. There is also the advantage of a reduced sensitivity in the dependence on the
normalization.

Studying the expression given in equations (1.12) or (2.9) respectively, one finds
that in numerical applications there are two different strategies in determining c.
The first is to extrapolate the critical exponents from the finite-size data and then
to use these extrapolants to obtain an estimate for ¢. The second is to take the
scaled finite-size energy gaps as they are and get an estimate c¢(L) depending on
the lattice size and then to extrapolate c(L). We will focus on the latter Strategy
since it can be applied more generally. Many examples presented in section 3 show
that good estimates for ¢ can be obtained even from tiny lattices. Combining the
various methods of determining the central charge described earlier will improve
the numerical accuracy considerably and pive (together with the critical exponents)
valuable information on the universality class the system belongs to, even if ¢ > 1.

We want to stress that so far all parameters on which the Hamiltonian depends
(like temperature or magnetic field strength) were assumed to be such that the
corresponding two-dimensional system is criticalf. However, it is interesting to note
that by expressing the critical exponents in terms of the scaled energy gaps as functions
of the parameters of the two-dimensional system their relation to the central charge
extends away from criticality into the scaling region and thus defines new universal

functiong of temnerature m-:lnnpfu" ﬁp!rl strenath, etc rhnrnrtprwunn the cuctame n nder
AWM EIV ALY WL Lvlllr\-l LRy lllubllu Aw N b iy Wl Liria 5 [* 1% \]Jﬂ\ulllﬂ \l[l“u

consideration. At the critical point, these [unctions take the value ¢, which is the
central charge. This is going to be discussed in the case of the Ising model with a
thermal perturbation, where we can compute this function exactly.

The paper is organized as follows. In the following section we define a class of
universal functions Cp, 5, depending on the same parameters {g} as the Hamiltonian
(transfer matrix) and study their behaviour in the critical ({g} = {g.}) range of
parameters. In particular, we show that C'gg/(g.) = c. In section 3 we discuss the
finite-size corrections 10 Cgzp.. In the critical region Cgp, turns out to converge
very rapidly to c in many cases, providing excellent estimates for ¢ even if only data
for very small lattices are available. In a comparison in some examples this method
of determining ¢ gives better results than the standard way of estimating ¢ from the
ground state energy described earlier. We present results for well known models such
as the Ising model and conjectures for cases, where ¢ is not yet known. In section 4

1 In particular, the lemperature variable of the two-dimensional system used in section 5 should not be
confused with the temperature T = 1/ of the one-dimensional system.
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the dependence of the measurement of ¢ on the normalization £ is studied. As a
by-product of our considerations we propose a way of determining the normalization
¢ of the Hamiltonian using modular invariance. In section 5 we briefly comment on
the properties of the universal functions Cgpg.(g) at off-criticality. As an example
we consider the Ising model with a thermal perturbation in zero magnetic field. In
the last section we summarize and discuss our results.

2. The universal Cgg, functions at criticality

Let the Hamiltonian (1.2) of a system of finite length L depend on a set of param-
eters {g} such as temperature or magnetic ficld strength. In the sequel this set of
parameters {g} will simply be denoted by ¢g. We denote by E,(g; L) the ground
state energy of the Hamiltonian H. Consider the limit L, 3 — oo, with

A=46L 6 = constant. .10

The partition function on a rectangle of dimension 8 x L with periodic boundary
conditions, ie. a torus, is given by [10]

Zpp(L,B) = Tre PH = Trel-LH) 22

where 6 = /L is the modular parameter of the torus. Define the universal function
Cpp({g}) for the quadratic torus with § = 1 by

— 1

™ L—oo

6 . 8
Cpplg) = im _%I“ZPP(mL;‘S)‘L'Eo(g':L)L_l- {2.3)

Inserting (2.2) one gets

L Tr(H - E;)e LH

CPP = 12Ll']m

—oa 27 Tre-LH
_ . 2 L/27(E, - Ey)exp{-2x[L/2r(E, - E,)]}
=12 }im, S exp{-27[L/27(E, — E,)l) @4

. L
= 121:]({_?; ﬂ(H - Ey)s=1-

This function, the mean value of the scaled energy gaps on the quadratic torus
(in one-dimensional language: the thermodynamic average of the scaled excitation
energy at inverse temperature 3 = L), is the basic object we are dealing with in
this paper. Its properties and peneralization to other boundary conditions are going
to be discussed here and in the following scctions.

Suppose that the system undergoes a second-order phase transition for a certain
set of coupling constants {g} = {g.}. At criticality in a conformally invariant system
" Zpp is modular invariant [6], so in particular it is invariant under the subgroup of
modular transformations generated by §: 8§ — 1/8. In the large L limit we have

Zpp(g.;6) = Trexp [—‘ZW (Lo + L, - 1—6_;.') '5] =Zpp (Qc; %‘) (2.5)

tNot L » 8 asin (1.1[)!
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where (1.3) was used (we assume H to be normalized). Thus

a9 1 G

55 2rr(0:8) =% (mzw(gc; 1/5)) . (2.6)
From (2.5) and (2.6) follows

%"(Lu'i'zn)a = —% (% —(Lo‘*‘_ﬂn)u&) )

which is the result quoted in the introduction (1.12). In particular for § = 1 we can
formulate the virial theorem as

e=12(Ly + Lp)s-;- 2.8
Inserting the scaling properties (1.3) and (1.4) into the definition of Cpp(g) (2.3)

we find Zpp(g,;6) = /63 e~27=»% and the virial theorem expressed in terms
of the function Cpp reads as

Cpp(g) = 12{Lo+ Ly}s=

r e—?r.r.,
= IQZ—E’E—Z'W (29)

n

=c.
Since in our approach we consider the 3, L — oo with condition (2.1), & finite,
boundary conditions in both space and fime direction, are relevant. The central charge
of the Virasoro algebra can be computed from the set of anomalous dimensions of the
scaling operators and their descendents belonging to an S-invariant partition function.
Rephrased in a different way, this means that ¢ is determined by the spectrum of
L, + L, given by the energy gaps of the Hamiltonian (or transfer matrix) describing
the system. We want to stress that the sum in (2.9) does not only contain the
anomaious dimensions of the primary fieids but runs over the compieie spectrum of
Ly + L.
Instead of using Zpp one may insert into the definition of € (2.3) other linear in-

dependent S-invariant partition functions Z g g. corresponding to systems with bound-
ary conditions B, B’ in space and time direction defining new functions Cgg.(g).

6 .. 2 . _
Cpe:(g) = — lim [_8_51n Zgplgi Li6) = L - Eqlg; L)L=1 : (2.10)
Because of S-invariance
8
('53235:(905))6:1 =0 (211)
thus
Cppi(g.) = c. (2.12)

Note that this holds true for any linear combination of S-invariant partition func-
tions Z, = 377, o; Zp g This defines functions C,(g) corresponding to different
choices of boundary conditions specified by the set of numbers «. At criticality they
satisfy

Colg.) =¢ (2.13)
independent of . Each of the functions C, gives an independent determination
of the central charge c. Equations (2.9), (2.12) and (2.13) result merely from S-
invariance of the partition function and therefore apply to any two-dimensional con-
formally invariant system.
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3. Application to finite systems

So far, we have discussed results which are valid for infinite systems. In order to
compute the central charge of a specific system exactly one either has to calculate
the free energy per site in a strip of finite width L at zero temperature and expand
it in powers of L-! (see (1.5)) or one computes the free energy per site of the
infinite system at finite temperature T and expands it in powers of 7 (1.8). The
virial theorem (2.9) opens the new possibility of computing ¢ of a system of length
L and temperature T = 1/L in the limit L — oo, LT = 1. As we discuss in
this section, this can be used to obtain excellent estimates for the central charge in
cases where only numerical data for finite systems are available. In such systems
only the low-lying part of the spectrum can be determined and consequently not the
complete (infinite) set of excitations of the primary fields. Apart from that the scaled
energy gaps £, (L) = £(L/2=)(E, — E;) (see 1.4) differ from the exact values of
the critical exponents x, by a finite-size correction ¢,,. Both effects have to be taken
into account when trying to extract an estimate for ¢ from finite-size data.

3.1. Effect of cutting the Hilbert space of states

Before we study finite-size effects, it is important to note that the sum in the right-
hand side of (2.9) is very rapidly converging, therefore for an approximative compu-
tation of ¢ it is possible to restrict the infinite set of critical exponents to a small
number of low-lying excitations in the spectrum. This is important since in finite-size
calculations only the lower part of the spectrum can be determined. It is worth
studying the effect of cutting the space of states on the computation of ¢ by means
of (2.9) in concrete examples.

Consider the Ising model in zero magnetic field on a two-dimensional lattice of
dimension @ x L. The partition function is

Y exp (—kZaicrj) 3.1
NN

config.

where k is the inverse of the temperature (not to be confused with 3, the temperature
of the one-dimensional quantum system). The sum inside the exponential runs over
all nearest neighbours in the lattice and the sum outside over all configurations of
spins o; = +1. The infinite system is critical if k& = k. = 1In(1 + +/2) with central
charge ¢ = 1. According to (2.5) at criticality the partition function on a torus of

dimension L x (3 can be written as
Z(k_; §) = Tre~2r(LotLo-1/24)5 3.2)

The (infinite-dimensional) space of irreducible representations of the Virasoro algebra
is spanned by the eigenstates of the (scaled) Hamiltonian Ly + L, with eigenvalues
z = A+r+A+7. The highest weight reprcsentauons {(r = 7 = 0) correspond to the
scaling fields with critical ecxponents x = A + A. For periodic b boundary conditions
this are the primary fields energy density ¢ with dimension (A, A)= (2, 2) z, =1,
the magnetization ¢ ((A,A) = (;51 16) x, = 1) and the identity operator 1 with
(A,A) =(0,0), z = 0. In terms of charactcm of the Virasoro algebra the partition
function reads

Zpp(6) = xoXo + X172X172+ X1/16X3 /15 (3.3
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where

s

(1 - z"—llﬂ)]
(1-2mm12)

n=1 n=1

xo(8) = %z-1/48 [ﬁ (1 + zn—-l/?) +

X172(6) = %2_1,48 "ﬁ (1 + "7 l/2) X))

n=1 an

wn=l ¥

.-.':IS

E
1l

o0
X1/16{8) = z71/%8 [21116 Ha+ 2")]
n=1
and z = e~ ?"%, It turns out that ignoring all but the primary fields, ie. restricting
the space of Virasoro states to the irreducible highest weight representations, gives a
good approximation for c. In the case of the Ising model inserting the dimensions
z = 0,z, = 1 and z, = 1 into (2.9) and neglecting the contribution from the
descendents (r,F > 1} yields ¢ = 12(L exp —27/8 + exp —27) /(1 + exp -27 /8 +
exp —2x) == 0.485.
Including the lowest lying excitations with r + 7 <1 (z, € 2) the result is
c = 0.4998 and taking all descendents with »4+7 < 2 (z,, £ 3) le ads t0 ¢ =2 0.499 94
(see table 1).
Table 1. Different approximalive values for the central charge ¢ computed from (2.9) for
the Ising model (rows 1 and 2), the three-state Polts model (row 3) and the four-state
Potts model (row 4) using partition functions Zpp corresponding lo periodic boundary

conditions and £ (see (3.6)). The calculation is done using critical exponents with 2, €
1, 2 and 3 respectively.

Z Tn 1 I, &2 a3 ¢
Zpp 0.485 0.4998 0.499 94 05
zZ 0.497 0.499 98 0.499992

Zpp 0.773 0.7998 0.799999 0.8
Zpp 0.959 0.9995 0.99990 1

There is one linear independent S-invariant partition function Z , , corresponding
to antiperiodic boundary conditions in space and time direction

Lap= X1/16X1/16 — XoX1/2 = X1/2Xo0- (3.3)

With Z, , one can construct the S-invariant linear combination Z = Zpp -2, , =
Z4p + Zp 4 Which in terms of Virasoro characters is given by

Z= |x0+xl/2lz= 21/?4102_[ (1+z“—1/2)2 (3.6)
n=i

The primary fields appearing in Z are the identity operator with dimension {0,0),
the Mayorana fermions ¥ and ¥ with dimensions (2 ,0) and (0, 2) respectively and
the energy density € with (A,A) = (2, 2) As already seen very few exponents
lead to almost exact values for c. This holds true not only for the Ising model but
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is also a general feature of expression (2.9) making it useful for determining the
central charge. In table 1 we list approximate values for the central charge of the
Ising model obtained from Zpp and Z and of the three- and four-state Potts model
obtained from Zpp for various cutoffs in the space of irreducible representations of
the Virasoro algebra,

3.2. Finite-size corrections

As discussed in section 3.1, we do not expect the lack of higher excitations in the
finite-size spectrum to be an essential obstacle to an approximative calculation of ec.
Excitations with large « do not give significant contributions to the sums in (2.9) and
can be ignored. On the other hand, the finite-size contributions to =z, lead to finite-
size corrections to ¢. This has to be discussed in more detail. Here as throughout
this section we assume the Hamiltonian to be normalized properly.

First of all, as mentioned in the introduction, there are two strategies one can
follow. One possibility is first to obtain estimates for critical exponents by an ex-
trapolation of the scaled energy gaps to L — co and then to use (2.9) to calculate
an estimate c,,,. The difference ¢, between the estimated exponents 2$) and the
correct values x, leads to an error in ¢ as discussed later. If the low-lying part of
the spectrum has been determined completely, it is given up to first order in the
differences e by (3.9) with C{ L) replaced by c,,,. On the other hand, in the system
under consideration, it might be impossible to obtain all critical exponents which give
relevant contributions 1o (2.9). In such a case the resulting error in the determination
of ¢ would be large.

The second method is first to insert the complete set of finite-size data, the scaled
energy gaps £,(L) into (2.9). This defines a function C(L) converging to c. Now
this function can be extrapolated in order to improve the result. In order to decide
which extrapolation algorithm has to be applied and how reliable the result is, one
must have some knowledge of the order of magnitude of the finite-size correction to
¢ and the scaling properties of C{ L) which can be derived from the scaling behaviour
of the energy gaps.

We assume the scaled energy gaps €, (L) to be given by [6]

£a(L) = o (E, - Ey)

=2, 4+ oL a4 3.7)
=&, + Eq-
Here the a()

are constants and 1,(f) > 0. e, = e,(L) denotes the finite-size
correction to the exponent 2,. Then C(L) E (gc, L) for a finite lattice as a
function of L is defined by

an (LYexp(-2n&, (L))
Yo exp(—2nE, (L))
S alw, + e, )exp(=2me, Yexp(=2nz, )
S exp{—2me, }exp(—27z,)
{zexp(—27e)) + {eexp(— 2776))
{exp(=2me))

(L) =

12 (3.8)

=12
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Expansion in e leads to the scaling behaviour of the universal C-function at the
critical point. Up to first order in ¢ the finite-size correction to C' is given by

C(L) = c+ (12 + 2mc) () ~ 247 (xe)
=cH+a L™V +a, L7V 4 ... 3.9

with constants a; and exponents y; determined by (3.7). The (infinite) set of ex-

ponents y, appearing in this expansion is the same as the set {v' )}. The order
of magnitude of the finite-size correction to c is that of the finite-size corrections
to the critical exponents. The powetlike convergence suggests the application of the
algorithm of Bulirsch and Stoer [15] for an extrapolation to L — oo,

3.3. Determination of c in some specific systems

In order to test the reliability of computing the central charge from the virial theorem
(2.9) using finite-size data, we have checked it in many cases where the central charge
is known. After having convinced ourselves that this method produces reliable results
we applied it to some systems, where it is not yet known. We discuss some examples.
In table 2 we present the function C'(L) and extrapolated values for various models
where ¢ is known.

Table 2. Different approximative values C'(L) for the central charge ¢ = Cf{oa)
computed from quantum Hamiltonians with L sites for the Ising model, the three-
siate Potts model and the Ashkin-—Teller model [16] for various values of the coupling
constant. h = I corresponds to the four-state Potts model and £ = 1 to the point with
Zamolodchikov=Fateev symmeuy [17]. At h = % the system reduces to two decoupled
Ising models and at k = 1 a Koslerlitz-Thouless phase transition takes place. cexp is
an extrapolated quantity while ¢y),eor denotes the actual value of the central charge.

Ashkin-Teller
L Ising Potts3) k=%t k=1  h=1% h=1
1 05136 0.8526 L1100 11055 10272 0.6661
2 0.5541 0.8892 Lz e 1.1083 1.0034
3 05339 0:8519 10672 10644 1.0677 1.0249
4 0.5184 0.8267 10337 10335 1.0368 1.0145
5 0.5108 0.8146 L0177 10178 1.0216 10074

cexp  050000(2)  0.8000(1)  1OK1)  0995(7)  1.004(4)  0.997(5)

Ciheor 0.5 0.8 L1 1 ! 1

The extrapolated values computed using (3.8) are in excellent agreement with
the predictions. In addition we find that in many cases the finite-size data evaluated
from very small lattices give surprisingly good estimates for c. The scaled energy gaps
£,( L) are computed from the eigenvalues of the corresponding quantum Hamiltonian
with 14 sites (Ising model) and 11 sites (threc-states Potts model) respectively. In
the case of the Ashkin-Teller model [16] we have restricted our calculation to chains
of length up to five sites in order to simulate a more typical situation. In order
to get information on the error in the determination of ¢ resulting exclusively from
finite-size corrections, we have selected examples, where the normalization £ of the
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Hamiltonian is known. The error resulting from the measurement of £ is investigated
in the next section,

It is tempting to apply (3.8) to transfer matrices of small lattices as well. Here in
principle no normalization has to be fixed (see introduction), only finite-size correc-
tions contribute to the error in ¢. As shown in table 3 values for ¢ computed from
the eigenvalues of transfer matrices for only one site are very close to the real central
charge of the infinite system! The fast convergence of C(L) is particularly useful
when only small lattices are accessible to numerical calculations.

Table 3. Different approximative values C(1) for the central charge c of the king model,
the three- and four-state Potls model and the six-vertex model computed using (3.8) from
the eigenvalues of the corresponding transfer matrices for one site. ‘The value obtained for
the six-vertex model corresponds to the choice of parameters p = /12, v—np = #/2
in Baxter's parametrization of the vertex weights {18).

Model  Ising Potts(3)  Potts(4)  Six-vertex

C(1) 0493 0814 1.049 1.049
¢ 0.5 08 1 1

As an example of the strategy first mentioned, first evaluating extrapelants for the
critical exponents and then calculating ¢ from these, we consider the six-state quantum
chain [19, 20]. The spectrum of the six-state quantum chain with toroidal boundary
conditions is known for certain values of the coupling constants [20). For special
choices of coupling the system has Zamolodchikov-Fateev symmetry [17] with central
charge ¢ = 1.25. Inserting the measured exponents with = < 2 as given in [20] for
the spectrum with periodic boundary conditions into (2.9) we obtain ¢ = 1.244(3),
while the determination from the ground state energy gives ¢ = 1.25(1).

Next we want to compare the determination of the central charge discussed in
this work with the traditional numerical methods, ie. using the correction to the
ground state energy per site (1.5) and from the excitation energy (1.11). For the
X X Z-quantum chain (corresponding to the six-vertex model] with ¢ = 1) Bonner
and Fisher determined numerically the low-temperature specific heat from chains of
length up to 11 sites [21]. Using (1.11) there results give ¢ = 1.1. On the the
other hand, from (3.8) one obtains ¢ = 1.00(3) from data from up to 10 sites and
extrapolating to L — oo.

When determining ¢ from the ground state energy (1.5) one subtracts E(L)/L -
E(L —1)/(L - 1) in order to eliminate the generally unknown constant A and
obtains an estimate

6L(L—1)

(L) = (L E(L)- (L - 1)'1‘7(5“1))'ﬂ(2L—1)'

(3.10)

In table 4 we show finite-size estimates and BST extrapolants for ¢ obtained from the
transfer matrix of the critical Ising model (3.1) with periodic boundary conditions, We
assume the holk free energy per site A to be unknown and restrict the calculations

Gl saniiw Liiw raraeh R wow wame ant Q30 iRl L uidallUilly

of the estimates by (3.8) (left columns) and (1.5) (right columns) to small numbers of
sites. In order to study the dependence of the extrapolated value from the maximal
number of lattice sites available we calculate the extrapolants using the data C(L)
and ¢ (LYwith 1 < L £3,1 g L <5and 1 <L <8 Comparing the finite-size
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results and the extrapolants obtained from the values up to three, five and eight
sites we find that the determination of ¢ from the ground state energy is less precise
than the computation from the energy gaps. The difference in precision becomes less
pronounced as the number of sites increases.

Table 4. Different approximative values for the central charge c of the Ising model with
L sites computed from the eigenvalues of the transfer matrix. In column 2 the estimates
C( L) obtained from (3.8) are showa, while column 4 contains estimales ¢, (L) obtained
from the finite-size correction to the free energy per site, see (1.5). In columns 3 and 5
asT-extrapolants of the respective series up (o three, five and eight sites are given,

L c(L) Cexp cre. (L) Cexp

1 0.4930 —_

2 0.5930 0.5676

3 0.5658 0.55(2) 0.6034 (.64(4)
4 0.537¢ (¢.5653

5 0.5225 0.505(5) 0.5380 0.49(2)
6 0.5145 (.5235

7 0.5102 05158

8 0.5075 0.502(2) G5113 0.503(3)

Having gained confidence in the applicability of (2.9) to small lattices we consider
the spin-j X X quantum chain [22]

N
H=¢ (Z SFST, + S SE’H) @.11)
=1

where S*(¥) denotes the spin-j matrix acting on site 7. Table 5 shows data obtained
from chains of length NV = 2 with periodic boundary conditions for different j. The
normalization was obtained from the partition function with antiperiodic boundary
conditions (see section 4). The spin-1 chain is known to have § = 1 and ¢ = 1.
Using finite-size data of the spin-1 chain with N = 8 [22] one obtains C(8) = 1.02
while C(2) = 1.18. From the estimates presented in table 5 we predict that ¢ = 1
independent from j.

Table 5. Different approximative values for the normalization £ and the central charge
c computed from (3.8) for the spin-j X A quantum chain with two sites. The data
support the conjecture ¢ = 1 independent from j.

. 1 3
J z ! b 2

g(2) 088 057 043 034
C(2) 0.99 118 118 1.12
ci8) — 102 — —
Ceonj l 1 1 1

4. Dependence of ¢ on the normalization £

One possible method of computing the central charge and critical exponents of a
statistical mechanics system is diagonalizing a quantum Hamiltonian H corresponding
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to this model. However, in order to preserve conformal invariance at the critical point,
the normalization ¢ of H which fixes the Euclidean time scale has to be chosen
appropriately. In the previous section in most cases we considered models, where the
normalization £ of the corresponding quantum Hamiitonian was known. We denote
this normalization by £_;.. In most cases, however, £ . has to be determined from
the finite-size data and we have to discuss the sensitivity of the determination of
the central charge to an uncertainty in the determination of £_;,. From finite-size
calculations in the Hamilton formalism £, can be computed only approximately.
Denote this ‘experimental’ value by €, with £, = p€ i, p # 1. The eigenvalues
of H then differ from the eigenvalues of the properly normalized Hamiltonian by a
factor p. Using the conventional method of determining ¢ via the correction to the
ground state energy (1.5) or from the excitation energy (1.11} one obtains

Coxp = PC (4.1)

(In contrast to section 3, here we assume that no finite-size corrections contribute.)

Setting o = (£, = Ecric)/Ecrie = 2 — 1 we find the error A in the determination of
G

A(a):(cexp—c)/c= o (4.2)
On the other hand, computing c by (2.9) gives, up to first order in o,

Y14+ a)rexp[—27(l + a)x]
S aexp[—27(1 + a)x]
= C+(1'3+'21rc)aTC§ - 24mafz?) 4.3)

Cexp = 12

where we haved used (3.9) with ¢, = az,. S-invariance of Z gives {z?) > (¢/12)?
and defining v > 0 by {z%) = (1 + v)(c/12)* we find

Ala) = (1——7%)04(:3 if ¢ > 0. 4.4)

In a neighbourhood of &, ¢.,, as a function of £, computed by (2.9) cannot
grow faster as when computed from the ground state energy (1.5). In all examples
we checked numerically, we even found |A(w)| < o, near £, ie. ¢ computed
from the critical exponents is less sensitive t0 a wrong normalization compared with
a determination from the ground state energy. As examples we show c as a function
of ¢ determined by (2.9) for the Ising model (figure 1) and determined from (3.8)
for the spin-1 X X -chain with two sites (figure 2).

The correct determination of £, can be accomplished by normalizing the scaled
energy gaps A F between excited states with momenta P and P’ of the same pri-
mary field to AE = P~ P’ [11]. Here we propose an independent method using
the modular transformation 5. Consider a system on the torus with boundary con-
ditions B and B’ in space and time direction respectively. If £ has been chosen as
€., Such that the system is conformally invariant at the critical point, then after a
transformation S :§ — 1/§ the partition function Zg g, satisfies

Zoo (3) = Zn(®) )
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0.6

(4]
1
3 1
G4 -
L P " i P S | P N
0.7 0.8 0.3 1.0 1.1 1.2 1.3
gfgcrit

Figore 1. The central charge c of the Ising model computed from the critical exponents
given by the partition function (3.3) as a [unction of the normalization £/&rix using
the virial theorem (2.9) (full eurve). £ .. denotes the correct normalization of the
correspending quantutn Hamiltonian. The dolted curve shows the dependence of ¢ on
&/€cris when calculated from the ground state energy (1.5).

o 1.0 -
0.9 —
u.nk . _

9 - L
N 1 N 1 N L | A L A
0'3.1 0.8 0.9 1.0 1. 1.2 1.3
878 e

Figure 2. The central charge ¢ of the spin 1 XX quantum chain computed from
the scaled energy gaps of the Hamiltonian (3.11) with two sites as a function of the
normalization &/€c using formula (3.9) (full curve). Here £.;i: & 0.61 denotes the
normalization of the Hamiltonian obtained approximately in {I7]. The dotted curve
shows the dependence of ¢ on &/€crit when calculated from the ground state energy
(1.2) under the assumption thal ¢ = 1 (see table 4 and [17]).
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In principle (4.5) can be used to determine £ .. For a numerical determination
consider the partition function on the quadratic torus (6 = 1). Here

ZBB' = ZB’B (4'6)

which is non-trivial if B # B’. In a finite system of width L this equation defines a
function £(L) converging to £, as L — oo. Different pairs of boundary conditions
define different functions £( L) all of them converging to the same value £ ., at the
critical point.

5. The universal Cgg functions at off-criticality in the Ising model

The functions Cpg.(g) are also defined at off-criticality and therefore allow for an
extensionn of the deftnition of the central charge into the scaling region. Here we
want to calculate these functions for the Ising model in zero magnetic field, where
the energy gaps as a function of the temperature (of the two-dimensional system) are
known.

First we briefly discuss the qualitative structure of the functions Cgp, at off-
criticality in the general case. Suppose the system to be in the scaling region near
the critical point. The energy gaps are continuous functions of the scaling variables
$4¥) which we define by

2 = (g(f) - gc"')) == (5.1)

where z{?) is the critical exponent of the field corresponding to the perturbation (i)
with correlation length £() and the ratio £/ L is fixed (L is the size of the system).

Consider the same partition functions Z, = } . o; Zp p: a before and the
corresponding functions C,_. Clearly C,(x) is a continuous function of the scaling
variables {u{")}. As discussed earlier, in the critical range of coupling constants
p() = 0 these functions take the value ¢ of the central charge independent of the
boundary conditions. Far away from-the scaling region all the scaled energy gaps
either diverge or vanish. Then all terms in the numerator in the right-hand side
of equation (2.9) become negligible while the denominator remains finite due the
presence of the lowest gap which, by definition, is 0. As a consequence C vanishes
independently from « corresponding to the absence of a universal correction to the
ground state energy in non-critical systems (see figures 3 and 4, © — 00). C, (1)
continuously interpolates the central charge between the critical and non-critical range
of coupling constants and is a measure of the numbers of degrees of freedom.

These properties of the C functions can be easily studied in the Ising model on a
two-dimensional lattice of dimension S x L in zero magnetic field but k& # &, (3.1).
The partition function Zpp(u;6) in the scaling limit L — oo, 4 = constant with
periodic boundary conditions in space and time direction is given by [14]

L-1 L-1
Zop(us6) = § Jim e [H (14 ety 4 IT (1 - bty 4
n=0 n=0

L-1

L-1
% eL(E1-Eq)é (H (1+ e-fm..é) + H (1 - e—fmné))] 5.2)

n=0 n=0
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Figure 3. The universal function Cpp(u) of the Ising mode] with thermal perturbation
defined by (2. 2) obtained from the partition function with periedic boundary conditions
& a tunciion of ihie scaling variabie p = L{k — :cc; in ihe iarge L iimit (see (5.1}).
Al the critical point 2 = 0 one has Cpp = ¢ = — and far from the scaling region

(# — o0) Cpp vanishes.

0.7 ™ T T T ¥ T T T —T T
0.6 -
3 4
0.5~ —
0.4} -

Figure 4. The universal function C(p) of the Ising model with thermal perturbation
defined by (2.2) obtained from the partition [unction (5.3) as a function of the scahng

variable o= L{L = L) in the !s.rg,c L limil see (8.0)) As in figurc 3, at ine criticai

point g =0 one hus € = c = § and far (rom the scaling region (x — o) € vanishes.
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where we have chosen 3 = L4,

L-1
El - ED = '12- 2(72n+1 - 72n) (5'3)

n=0

and

v, = 2arsinh(\/4:2/ L% + sin wn j2L?)
Yo = 2arsinh(2u/L). 5.4

From this partition function one obtains the function Cp P(1) (2.3) shown in figure 3.
The partition function Z(u;6) (3.6) in the limit L — oo

~ >0 o 2 2
Z(w:8) = 25 T (1 4 2/OuIm0m1727) (5.5)

n=1

with z = exp —-2n6 leads to

(‘j(u)=24i ‘./(2!”/7")2'!‘(”_1./2)2
n=1 1+ exp (217\/(2;1/17)2 + (n - 1/2)2)

shown in figure 4.

C(u) is symmetric in g, Cpp(p) is not. The reason is the scaled energy gap
(E, — Ey)L which, at the critical point, is proportional to the critical exponent of
the magnetization. For ;¢ — —oo this scaled gap diverges, for ¢ — oo, however, it
vanishes. This gap contributes to Z,p leading to the asymmetry in Cpp, but not
to Z. In this asymmetry the Z, symmetry-breaking of the Ising model at the critical
point is reflected. According to the general properties of the functions C{g) both
Cpp and C take the value C(0) = § = c at the critical point z = 0 and vanish in
the limit y — +4co.

6. Conclysions

Combining the ideas of finite-size scaling and modular invariance we have studied the
properties of two-dimensional statistical models near and at criticality. We defined
functions C, {g) of the physical parameters {g} such as temperature or magnetic field
strength characteristic for the universality class the system belongs to (see (2.3), (2.12)
and (2.13)). Here the index o represents the type of boundary condition imposed on
the system,

The main result of our investigation shows that for conformally invariant systems
all these functions take the same value ¢ in the ¢ritical range of coupling constants
{9} = {g.}, where c is the central charge of the Virasoro algebra (2.9). In the
scaling region away f{rom the critical point the C, are continuous functions of the
scaling variables p (5.1) approaching zero when leaving the scaling region (¢ — o).
At criticality it turns out that ¢ is given by certain sets of scaled energy gaps which
are the critical exponents appearing in the corresponding statistical mechanics model.
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Such sets are given by partition functions on the torus that are invariant under the
modular transformation S :é — 1/6 of the modular parameter §.

For an approximate evaluation of ¢ it turns out that not all exponents have to
be determined, in fact only small subsets (e.g. only the dimensions of the relevant
operators) are sufficient for a computation up to high accuracy (see examples in
table 1). This is part of the magic of (2.9) making it suitable for finite-size calculations,
where only low-lying excitations in the energy spectrum can be computed. Another
favourable property of C_ defined by (3.8) for finite lattices is its scaling behaviour
{3.9) being of the same nature as that of the critical exponents, a fact which allows
good estimations from finite-size data. Finally it turns out, that ¢ measured via
(2.9) (or (3.8) respectively) is less sensitive to errors in the normalization of the
Hamiltonian H than in the case of a determination using the ground state energy of
H. These properties lead to excellent finite-size estimates for the central charge ¢
even if the jattices used for the computation are extremely smali. Table 3 shows data
obtained from transfer matrices for only one site.

Since C{g) as a function of the lattice size converges to zero if the system s
not critical, in principle a measurement of C' provides a determination of the critical
point. So far we have not yet checked this possibility in a concrete example. As
an application of our considerations we have computed the spectrum of the spin-j

...... and Ffrumd A v P o dindamanAdans B ne e Moo rtIea
|.luau|.u1u t,uaul \-: 11} anag Wounia c = | uluupcuuclu Ul J, SUppli uus u]v wiljieiuiv

that ¢ = 1. As a by-product of our investigations we showed that the modular
transformation S leads to relations determining the normalization £ in the Hamilton
formalism.

Our approach to the determination of the central charge of the Virasoro algebra
has led to a valuable tool in finite-size studics and given new insight into the relation
between the central charge and the critical exponents. But it has also raised questions
we are not yet able 10 answer. We would like to understand the physical meaning
of the functions C, (g} in the scaling region. Furthermore it would be interesting to
learn whether there is any connection with the function C' defined by Zamolodchikov
in his famous ¢ theorem [23] and to Cardy’s recent application [4] to systems away
from criticality. He shows that ¢ can be computed in terms of certain correlation
functions in the scaling region. In {24] the ¢ theorem is reformulated by using the
spectral representation for the two-point function of the stress tensor and a possible
generalization to higher dimensions is discussed. In all these results critical and
off-critical properties appear to be intimately related.
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